3. Anammox Process

Outline of Anammox Process

- Anammox (anaerobic ammonium oxidation) is a novel anaerobically autotrophic nitrogen transformation pathway.
 - $1 \text{ NH}_4^+ + 1.32 \text{ NO}_2^- + 0.066 \text{ HCO}_3^- + 0.13 \text{ H}^+ \\ \rightarrow 1.02 \text{ N}_2^- + 0.26 \text{ NO}_3^- + 0.066 \text{ CH}_2 \text{ O}_{0.5} \text{ N}_{0.15}^- + 2.03 \text{ H}_2 \text{ O}$
- The advantages of anammox process compared with conventional BNR process
 - Energy saving: Reduction anammox of O₂ requirement
 - Cost saving: Organic
 matter (methanol) for
 denitrification is not necessary

Organic

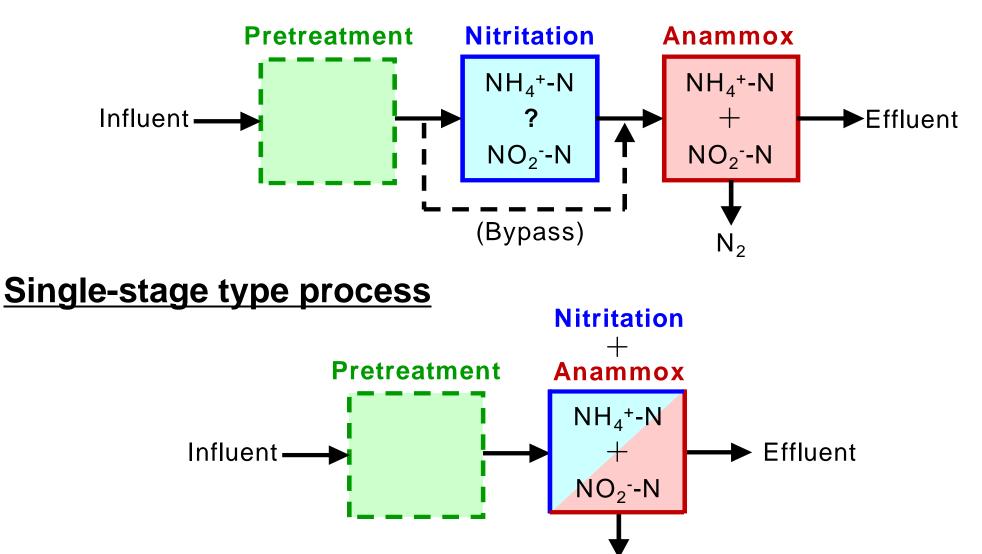
NO₃⁻

denitrification

NO₂⁻

nitrificatio

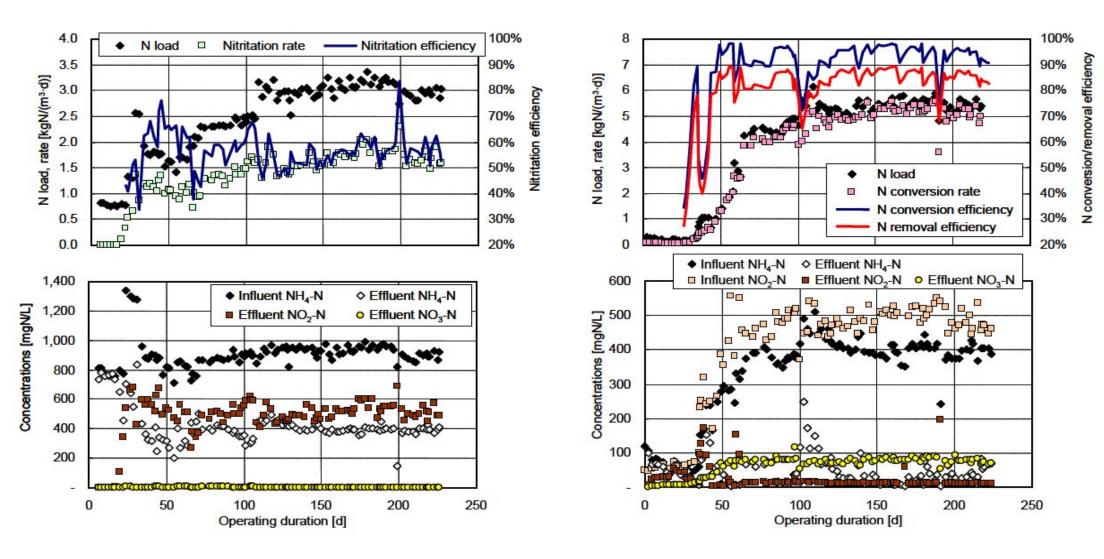
 O_2


Application of Anammox Process to Municipal Wastewater

Target of application to municipal wastewater

- Treatment of filtrate from a dewatering process of anaerobically digested sludge
 - Characteristically high levels ammonia, relatively little organic matter
 - High water temperature (optimum growth temperature of anammox bacteria: 30-40C°)
- Two different processes are required;
 - Converting ammonia to nitrite (**nitritation**)
 - Converting ammonia and nitrite into nitrogen gas (anammox)

Basic Flow of Anammox Process


Two-stage type process

Outline of Anammox Processes Evaluated in JS Technology Evaluation

	Process A	Process B	Process C
Pretreatment	Flow equalization (BOD removal) Screen	Flow equalization (BOD removal) (Coagulation)	Flow equalization (Coagulation) (Pre-aeration)
Nitritation reactor	mmobilization in PEG gel	Fixed bed	Sponge carrier
Partial nitritation	One-pass	Bypass	One-pass
Nitritation control	Heating of PEG gel	Water temperature and pH control	Water temperature and pH control
NO ₂ /NH ₄ ratio control	Aeration flow rate	Bypass flow rate	Aeration flow rate
Anammox reactor	Immobilization in PEG gel	Fixed bed	Granule
Anammox control	Water temperature and pH control	Water temperature and pH control	Water temperature and pH control

Example of Pilot-scale Plant Experiment Results (Process A)

Performance of nitritation reactor

Performance of anammox reactor

Evaluation Results of Characteristics of Anammox Process

- N removal rate of 70-80% can be expected by combining partial nitritation and anammox. Applicable NH₄-N concentration is 700-1000mg/L and N volume load is 0.7-2.0kgN/m³/d.
- Stable nitritation can be maintained and NO₂/NH₄ ratio is kept appropriate.
- In the anammox reactor, N conversion rate of 80% or more (rate of decrease of total NH₄-N and NO₂-N) can be expected. However, N removal rate falls by up to 10% compared to N conversion rate.
- Required start-up period: 0.5-1.0 months (partial nitritation), 2.0-3.0 months(anammox)

Results of Case-study Compared Anammox and Conventional BNR

- Anammox process can be expected to realize more effective and less expensive sidestreen treatment
- We expect that the application of anammox will promote the introduction of anaerobic digestion in Japan

	Anammox process	Conventional BNR process*	
Reactor volume	475-981 m ³ (Reduction rate:35-69%)	1,515 m ³	
Construction costs	1.2-2.7 million JPY/kgN (Reduction rate:22-58%)	3.4 million JPY/kgN	
Utility costs	240-370 JPY/kgN (Reduction rate:24-57%)	600 JPY/kgN	
GHGs emission**	5.7-8.6 kgCO ₂ /kgN (Reduction rate:24-50%)	11.3 kgCO ₂ /kgN	
*:Carrier-added step-feed biological nitrogen removal process			

**:Volume of greenhouse gas emission from utility consumption