

技術戦略部 受託調査メニュー [④]

下水汚泥嫌気性消化 試験業務

嫌気性消化プロセスの新規導入や各種バイオマス 受け入れ等を検討するにあたり、試験結果を踏まえ 効果や影響を定性的または定量的に概略把握します。

日本下水道事業団(JS)技術戦略部 担当課:資源エネルギー技術課

Japan Sewage Works Agency

<u>2</u>

業務の概要

【業務内容】

- ▶ 嫌気性消化プロセスの新規導入や既設消化槽への新たなバイオ マス受け入れを検討する際、施設設計のための基本情報や消化 特性、影響や導入効果を把握するために試験を行うものです。
- ▶ 以下のステップで実施します。

[検討I] 基本条件の把握:

• 当該処理場の施設及び運転概要、初沈・余剰汚泥の性状把握

[検討II] 嫌気性消化試験:

- 試験の実施(回分式または連続式試験)
- 試験結果整理(消化ガス発生量、性状、有機物分解率等)

[検討亚] 当該施設におけるメタン発酵の効率化:

• 施設計画、設計、運転管理上の留意点等整理

【業務の意義】

- ▶ 嫌気性消化の導入により、発生汚泥の減量化、汚泥処分費の削減に加え、新たな資源利活用の検討に貢献します。
- ▶ 地域バイオマス投入検討により、利活用可能なバイオガス増量ととも に、循環型社会の構築、地域活性化に貢献します。

【本業務で対象とする課題の例】

- ✓ 当該処理場への嫌気性消化の適用可能性を検討したい
- ✓ 既存消化施設への新たなバイオマス投入の影響評価を行いたい
- ✓ 汚泥改質等による高効率消化の導入効果を把握したい

Japan Sewage Works Agency

【検討対象範囲】

- > 回分式試験による定性的判断、連続式試験による定量的判断
 - 〇 消化ガス発生量
 - 汚泥減量効果(VS分解率)
 - 返流水(脱水ろ液)負荷(連続試験の場合のみ)

【その他検討対象範囲】

- ▶ 必要に応じて以下を追加検討
 - 〇 消化阻害の有無
 - O MAPトラブル

<u>3</u>

4

[検討I]基本条件の把握

▶ 導入検討対象処理場の概要把握

・水処理、汚泥処理施設の概要整理

- ・水処理、汚泥処理施設運転状況の把握、概要整理
- ▶ 汚泥性状把握
 - ・初沈汚泥および余剰汚泥の性状把握

TS、VS、有機分組成他

▶ 他処理場汚泥やし尿、浄化槽汚泥、その他外部バイオマス投入を 検討する場合は、それらの性状把握及び処理施設運転状況等を 把握

Japan Sewage Works Agency

∞ 業務フロ−および検討項目

[検討II]嫌気性消化試験(試験方法)

嫌気性消化試験には回分式試験と連続式試験の2つの方法があります

回分式試験

消化種汚泥の入った発酵槽に試験 汚泥を最初の1回のみ投入し、ガス発 生量を測定します

回分式嫌気性消化試験装置(6連)

連続式試験

発酵槽に試験汚泥を定期的に 連続投入し、ガス発生量及び引 抜き消化汚泥の性状を測定します

連続式消化試験装置(2連×2基) Japan Sewage Works Agency

6

[検討II]嫌気性消化試験(試験概要)

	回分式試験	連続式試験
発酵槽容量·数	250~500mL×6連 (最大6種の汚泥の試験可能)	5L ×2連/基 ×2基 (最大4種の汚泥の試験可能)
標準試験条件		
消化温度	30~60℃(任意設定可)	30~60°C(任意設定可)
消化日数	7~10日/回	15日(高温)、20日(中温)
試験汚泥量	50~100mL/回	250~350mL/日
試験結果	定性的メタン発酵特性	定量的なメタン発酵特性
	①消化ガス発生パターン	①ガス発生量
	②ガス発生量	②ガス性状(CH ₄ 他)
		③汚泥分解率
		④消化分離液性状
		Japan Sewage Works

[検討II]嫌気性消化試験(試験目的1)

回分式試験

- ① 既設消化槽に新たなバイオマスを受け入れようとする場合、消化阻 害等を引き起こすことがないか簡易的に検討する場合(定性的な 判断)
- ② 既設消化槽への可溶化装置導入等により消化効率の改善が期待 できるか定性的に検討する場合
- ③ 各種バイオマスのメタン発酵性(分解ガス化率)を定性的に比較 検討する場合

8

[検討II]嫌気性消化試験(試験目的2)

連続式試験

- 新規に嫌気性消化プロセスの導入を図るに当たり、施設設計の基礎情報(有機物分解率、ガス発生量、発生ガス性状、消化脱水 ろ液性状他)を定量的に把握することを目的とする場合
- ② 既設消化槽において他のバイオマスを受け入れた場合の消化特性 (ガス発生量、有機物分解率、その他)を定量的に把握する場合
- ③ 熱改質や物理的改質による高効率消化の導入効果を定量的に把 握しようとする場合

Japan Sewage Works Agency

∞ 業務フローおよび検討項目

[検討Ⅲ]当該施設におけるメタン発酵の効率化

- ▶ 施設計画や設計上の留意点
 ○反応タンクのBOD-SS負荷
 ○外部バイオマスの受け入れ方法 等
- ▶ 施設運転管理上の留意点 ○初沈汚泥の引き抜き方法

 - 〇重力濃縮槽の運転管理 等

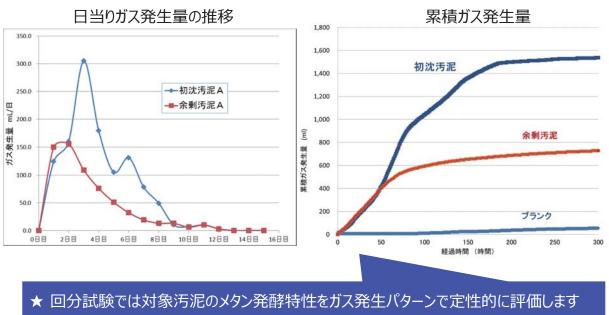
🚿 業務のアウトプット(目次)のイメージ

 本試験調査の目的 〇)浄化センターの概要 1 施設概要 2 運転概要 	 5.4 消化試験の結果 消化ガス発生量、消化ガス基本性状 有機物分解率、その他 ※回分式試験と連続式試験の場合で異なる
3. 嫌気性消化の基本と現状 3.1 嫌気性消化の基本メカニズム 3.2 嫌気性消化の現状	 6. 当処理場におけるメタン発酵の効率化 6. 1 施設計画、設計上の留意点 6. 2 施設運転管理上の留意点 6. 3 新しい嫌気性消化法等の紹介
 4. 汚泥の基本性状 4. 1 初沈汚泥の一般性状 •TS、VS、有機分組成他 4. 2 余剰汚泥の一般性状 •TS、VS、有機分組成他 	7. 調査結果まとめ 7.1 汚泥の基本性状 7.2 メタン発酵特性 7.3 消化槽導入の効果と留意点
5. 嫌気性消化試験* 5.1 消化試験の概要 5.2 試験汚泥の採取方法 5.3 消化試験の条件	く参考資料> ・汚泥の有効利用、嫌気性消化に関する 参考資料(適宜)

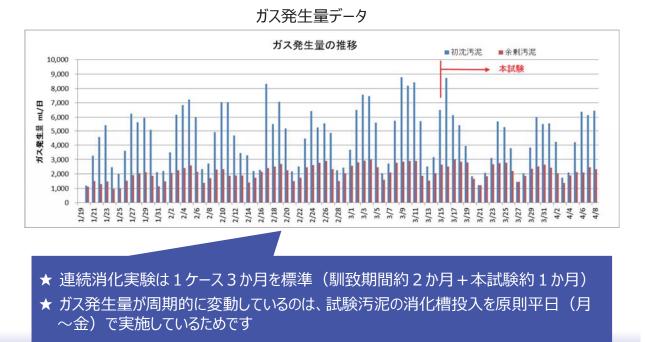
Japan Sewage Works Agency

15 業務実施工程および費用

<u>12</u>


	回分式試験	連続式試験
試験期間 (準備・分析期間含む)	2~3か月/回	5~6か月/回
費用(協定額) (試験試料数、分析項目等に より異なる)	<mark>約5百万円^{※1}</mark> ※1 試料数2~4を想定	<mark>約10百万円^{※2}</mark> ※2 試料数 2種類を想定

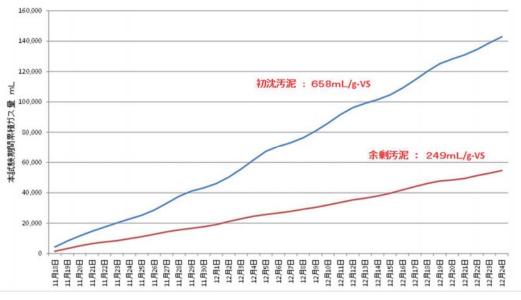
<u>業務実施工程の例</u>


【回分式メタン発酵試験結果(事例)】

★定量的な評価(投入VS当たりガス発生量、有機物分解率など)はできません

12 検討結果の例2

【連続消化実験の結果(事例)】



14

Japan Sewage Works Agency

12 検討結果の例③

【連続消化実験ガス発生量解析結果(事例)】

投入VS当りガス発生量mL/g-VS = (本試験期間における累積ガス発生量mL)÷ (本試験期間の全投入汚泥VS量g-VS)

実施年度	処理場名	試験種類	試験目的他
H21 岐阜県 K処理場		回分	新規嫌気性消化槽導入検討
H22	H22 岡山県 K浄化センター		新規嫌気性消化槽導入検討(冬季試験)
H23	H23 長崎県 N町浄化センター		消化ガス有効利用検討
" 長野県 M市浄化センター		回分 連続	汚泥のメタン発酵特性データ収集(技術評価)
H23~24	熊本県 K市浄化センター	回分 連続	海苔加工排水受け入れによる影響検討
H25	岡山県 K浄化センター	連続	新規嫌気性消化槽導入検討(夏季試験)
H25 群馬県 I市浄化センター		回分	消化槽改築・し尿汚泥混合処理検討
H26 埼玉県 M水循環センター		回分	新規嫌気性消化槽導入検討
H27	熊本県 O町浄化センター	回分	消化槽改築更新、消化ガス有効利用検討
H27	埼玉県 N水循環センター	連続	新規嫌気性消化槽導入検討
H27~28	高知県 T浄化センター	連続	新規嫌気性消化槽導入検討
H28	埼玉県 F市浄化センター	連続	新規嫌気性消化槽導入検討
H28 佐賀県 S市浄化センター		連続	食品工場副産バイオマス受け入れ検討

- ▶ 業務実施方法は、受託連携(実施設計業務等)で行う方法と単 独協定で実施する方法のいずれも可能です。
- ▶ 嫌気性消化試験装置の台数、試験実務体制に限界がありますので、試験実施時期によっては対応できない場合もあります。なるべく早めに協議願います。
- ▶ 特に連続式消化試験では試験汚泥の定期的な採取、運搬が必要になり、処理場の協力を頂くことが前提となります。

